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Abstract. A recursively built deterministic fractal lattice, generalising a model proposed 
by Kirkpatrick, is used to examine general electrical properties of percolation clusters in 
arbitrary dimension. Most physical quantities are exactly analytically tractable, since the 
model admits an exact renormalisation group transformation, associated with a rational 
mapping T ( x )  of one complex variable. The model has one free parameter 1; the fraction 
of conducting material, which is put equal to the self-dual point f= f in two dimensions, 
and chosen to reproduce the numerical values of the exponent ratio t l v  in higher 
dimensions. 

Our results concern in particular the frequency dependence of the impedance and the 
loss angle, where we prove the existence of scaling laws at low and high frequency. We 
also determine exactly the transient response to an arbitrary input signal, and relate the 
distribution of relaxation times of the infinite lattice to well known mathematical objects 
associated to the rational transform T, namely its Julia set and its invariant measure. The 
critical amplification of flicker (or I / f )  resistor noise is also considered; i t  is shown to 
obey scaling laws with its own critical exponents, in agreement with other recent works. 
The relationships to other theoretical models and to experiments on metal-insulator 
mixtures are discussed. 

1. Introduction 

The electrical properties of random media near their percolation threshold have been 
the subject of much interest. The analogy between percolation and continuous phase 
transitions has been extended to dynamical quantities, such as the conductivity (+ and 
the dielectric constant E (see Kirkpatrick 1978, 1979, Stauffer 1979, Essam 1980 for 
reviews). These quantities obey the following scaling laws: U - ( p -pJ‘ ( p  > p , )  and 
E - Ip,-pI-’, where the critical exponents s and t are not related to the static ones, 
just as in the area of critical dynamics. The numerical values of s and t are known 
with a good accuracy in dimensions 2 and 3: 

S/  V(2D) = t /  V(2D) = 0.977 f 0.010 

S/ V(3D) = 0.85 * 0.04 t /  V(3D) = 2.20*0.10 

(Derrida et a1 1983a, Herrmann et a1 1984, Hong et a1 1984, Zabolitzky 1984, Lobb 
and Franck 1984). 

Percolation is certainly the example of critical phenomena where the critical 
exponents and anomalous dimensions have the most concrete interpretation in terms 

0305-4470/85/132565 + 1S02.25 0 1985 The Institute of Physics 2565 



2566 J P Clerc, G Giraud, J M Laugier and J M Luck 

of Hausdorff (or fractal) dimensions of several objects: the infinite cluster itself, its 
‘backbone’, or the random walk on these sets. A lot of attention has been paid to this 
approach (Kirkpatrick 1979, Gefen et al 1981, Alexander and Orbach 1982, Rammal 
and Toulouse 1983, Stanley and Coniglio 1984, Herrmann and Stanley 1984). 

Inhomogeneous deterministic fractals, usually built recursively, have also been used 
to mimic some properties of percolation clusters (Kirkpatrick 1979, Gefen et a1 1981, 
Rammal and Toulouse 1983, Clerc et a1 1984). Their main advantage is that they allow 
for exact analytical treatments. In the present paper, we aim to use such a fractal 
lattice to study general electrical properties of percolation clusters, like the frequency 
dependence of the impedance, as well as transient regimes and noise amplification. 

The fractal set we have chosen to work with has been proposed by Kirkpatrick 
(1979). It is also described in Mandelbrot (1982). It is obtained by cutting off a quarter 
of a square conducting sheet, then a randomly chosen quarter of each of the three 
remaining squares, and so on. Figure 1 shows the first three steps of that construction. 
We propose to generalise it by allowing for a conducting fraction f different from 
Kirkpatrick’s original choice f = $, and to replace the holes by perfect capacitors. 
Figure 2 shows the equivalent circuit at generation n = 0, 1 and 2 (for f =  a). Let us 
mention that the Kirkpatrick representation is ambiguous (are two neighbouring 
squares in electrical contact?), while the network representation clearly defines which 
connections are present and which are not. A remarkable feature of this model is that 

n = o  n z l  17.2 

A A A 

Figure 1. The first three steps of Kirkpatrick‘s original construction of a 2~ fractal imitating 
a percolation backbone. 

A 

A 

B 

Figure 2. The circuit representation of the 2~ deterministic fractal lattice at generation 
n = O ,  1 and 2, f o r f = i .  
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the properties of the lattice are independent of the choice of random positions of 
resistors and capacitors inside each cell: only their number matters. 

In order to realise a lattice with a value of f  different from a ,  one just allows the 
number of capacitors per unit cell to be 4( 1 -f) instead of 1. In other words, one half 
of each cell (the upper half, say) contains 4(1 -f) capacitors and (4f-2) resistors in 
parallel, while the lower half contains two resistors in parallel. The fact that this 
number is generally not an integer is harmless: f has only to satisfy i < f <  1. In the 
following, we shall denote by DFL this f-dependent deterministic fractal lattice. 

The plan of the article is as follows. In 0 2, we show how the frequency-dependent 
impedance of the DFL may be related to the iterates of a given rational transformation 
T, which will play a central role throughout the paper. We study in detail the crossover 
behaviours of the impedance at low and high frequency, as well as the loss angle. The 
construction of the DFL is generalised to dimensionalities higher than 2, with emphasis 
on the 3~ case. In § 3, we determine the transient response of the DFL to an arbitrary 
input signal, and show how the intrinsic relaxation times of the network are related 
to the Julia set of the mapping T. In 0 4, we compute the frequency dependence of 
the amplification of the microscopic flicker-type resistor noise by the fractal structure 
of the DFL. The relationships of our model to more realistic cases, as well as its 
limitations, are discussed in 0 5 .  

2. Frequency dependence of the impedance and the loss angle 

2.1. Two-dimensional case 

Consider the DFL of figure 2 at the generation number n (it has 4" bonds). Let Ro be 
the resistance of the conducting bonds and CO the capacitance of the insulating ones. 
The frequency-dependent impedance Z , ( w )  of the lattice between points A and B 
satisfies the following recursion relation: 

where l ( w )  = ( iCow)- '  is the impedance of an insulating bond. This equation can be 
iterated down to n = 0, where we have 2, = Roy and hence we easily obtain: 

Z , , ( w )  = (iCow)-'T"(iw/w,) (2.2) 
where coo= (ROCo)-' is the microscopic frequency scale of the lattice, and T" = 
T 0 T 0 . . . 0 T ( n  times) is the nth iterate of the following rational transformation: 

( 1  - f ) x  +f 
2( 1 - f ) x  + 2f- 1 

T(x) = x 

The study of the sequence of impedances Z , , ( w )  is therefore reduced to that of the 
iterations of one single rational function T, which can be viewed as a renormalisation 
group transformation of the impedance ratio x. This type of rational renormalisation 
mappings in one variable has been recently studied in the context of hierarchical Potts 
models (Derrida et a1 1983a, Derrida et a1 1984, Itzykson and Luck 1983). 

The mapping T contains a lot of information on the electrical properties of the 
DFL. It will be emphasised in the following that a given feature of the transformation 
T or of its iterates corresponds to each electrical characteristic of our lattice. 
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Let us first analyse the fixed points of T :  there are three such points (satisfying 
T ( x )  = x ) ,  namely: x = 0, x = 1 and x = CO. It is soon realised that x = 1 is the only 
stable fixed point of T, corresponding to a pure medium (since xo = 1 means that each 
bond has the same impedance). The two other fixed points are unstable: as could be 
expected, the DFL exhibits critical properties for w -$ 0 and w + CO. Let us repeat once 
more that these results hold only for t < f <  1. 

Before studying equation (2.2) in more detail, we need some mathematical results 
concerning the iterates of the mapping T. The following is necessary to understand 
in detail the properties of our DFL, although it will appear technical and unattractive 
to the non-mathematician reader, since the main advantage of the present model is to 
be exactly solvable. 

Let us first show briefly that the fixed point x = 1 of the renormalisation mapping 
T is its unique attractor (using the terminology of dynamical systems). To do so we 
have to determine the critical points of T, defined in the mathematical literature as 
being those (complex) values of x where the derivative dT/dx  vanishes. They read: 

These have nothing to do with critical phenomena in the physical sense, which occur 
at 0 and CO. We know from the theory of rational transformations (Julia 1918, Fatou 
1919, 1920, Brolin 1965) that the basin of each attractor contains at least one critical 
point. This, together with the existence of a stable real fixed point x = 1, and the fact 
that x, given by (2.4) are complex conjugates of each other, ensures that the fixed 
point x = 1 is the only attractor of T. Another consequence of the unicity of the 
attractor is the structure of the associated Julia set J. In the present case, J can be 
defined as being the set of points x for which T " ( x )  does not go to one as n -$ CO. For 
instance J contains the unstable fixed points 0 and CO. This Julia set, which has just 
been defined in a rather abstract fashion, will receive a physical interpretation in 9 3 
in terms of the transient response of the DFL to an arbitrary signal. In the above 
mentioned work on the hierarchical Potts model, the Julia set also has an interpretation 
in terms of physical quantities: it is the locus of the zeros of the partition function. 
Let us now give a simple explicit construction of this set J. For a generic complex 
number x, there are two complex numbers y ,  such that T ( y , )  = x. These are called 
the pre-images of T i ' ( x ) .  They read: 

2( 1 - f ) x  -f,[4( 1 - ~ ) ' x ( x  - 1) +f2I1" 
T ; ' [ x ]  = 

2(1 -f) 
The iterated pre-images T - " ( x )  are defined for every integer n as being the 2" 

numbers y such that T " ( y )  = x. It is known that the Julia set J is the accumulation 
set of T-"(xo)  for a generic xo. It is soon realised from (2.5) that, whenever x is a 
real negative number, its pre-images T ; ' ( x )  are also real negative. The set J is therefore 
contained in the negative real axis. Moreover, we have seen that the transform T has 
only one attractor, namely its fixed point x = 1. This implies (Fatou 1919, 1920) that 
J is a Cantor set of the negative real axis. We shall present a picture of this set in 9 3. 
Since J is real every point iw /wo  for w # 0 and CO is outside J, and therefore we get 
from (2.2): 

lim Z n ( w )  = (iC0u)-' f o r o  # 0 and CO (2.6) 
n-m 

but this limit is far from being uniform in w and Zn(o) exhibits interesting scaling 
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behaviours when w + O  or 00 and n+co simultaneously. We shall return to this in 
00 2.1.2 and 2.1.3. 

2.1.1. DC responsk. The DC response of our DFL is clearly given by equation (2.2) in 
the w + 0 limit, where the transform T can be replaced by its linear approximation: 

d T  f 
dx 2f-1 x-*pox with po=-(O)=- 

and hence: 

Z n  = ~.o"Ro 

(2.7) 

As expected we get a pure resistance at each generation. In order to give a physical 
meaning to the factor p : ,  let us introduce the total length L of the DFL between points 
A and B 

L = 2". (2.9) 
Using this formula, we get an exact expression of the resistance R = Z n ( w  = 0) of the 
lattice as a function of its length only: 

R = Ro L'' (2.10) 

t /  v = In po/ln 2. (2.11) 

with 

We have identified the exponent in equation (2.10) with the ratio of the critical indices 
t and v of percolation, by using the standard finite size scaling law, which is not 
problematic below dimension 6, and which has been extensively used in numerical 
determinations of the exponents s and t (Demda et a1 1983b, Herrmann et a1 1984, 
etc.. .). 

Equation (2.11) relates the exponent t / v  of the DFL to the parameter f, which did 
not receive any interpretation up to here. The original choice of Kirkpatrick was f = :, 
which leads to t / v = 0 . 5 8 5 .  One could use equation (2.11) and the known value: 
t /  v = s/ v = 0.977 (Zabolitzky 1984, Hong et a1 1984, Herrmann et a1 1984) to get: 

f = 0.670. (2.12) 

This will indeed be our method of optimising f in the 3~ case. However we have 
another criterion to determine the optimal value off,  namely to require that the lattice 
is seIf-dual. We know that the self-duality of a 2~ square lattice has very interesting 
consequences in percolation, the most famous one being the equality s = t. Since the 
conductances of two dual bonds are reciprocals of each other, the DFL is self-dual if 
we have: 

T[x]T[l /x]  = 1 for all x. (2.13) 

It is straightforward to check that this holds for 

f=' 3 .  (2.14) 

Let us mention that it was not obvious (at least to us) that the DFL was self-dual for 
a particular choice of its parameter f: We shall comment on the very tiny difference 
between the two values (2.12) and (2.14) in the next subsection. Throughout the 
following, most equations contain f as a free parameter, but we use the self-dual value 
(2.14) for figures, and for comparison with realistic situations. 
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2.1.2. Scafing behaviour at  w + 0. Consider the impedance Z , ( w )  given by equation 
(2.2) when n + 00 and w -+ 0. This region has to exhibit a non-trivial crossover, since 
we know that Z , , ( w )  -+ (iCow)- '  (2.6) when n + C O  first; Z , , ( w )  = p.0" Ro (2.8) when w + 0 
first. 

The DFL is simple enough to allow for a rigorous derivation of the scaling behaviour 
of Z , ( w ) .  For that purpose define the following linearising variable: 

Fo(x) = lim Tm[xpgm] (2.15) 
m-m 

with pa as in (2.7). It is easy to realise that Fa satisfies the functional equation 

F a (  ponx) = 7-"[Fo(x)l (2.16) 

for arbitrary integer n. We shall use the following properties of Fa: it is analytic around 
x = o :  

(2.17) F0(x) = x - f ix2+ .  . . 
x-0 

but singular around x = CO: 

Fo(x) = 1 + Kox-*0+.  . .. (2.18) 
x - a  

I A r g x I c n  

The exponent A, is given by: 

A. = -lnf/ln pa (2.19) 

An easy way to derive (2.19) is for instance to insert (2.18) into (2.16) and use 
w o ,  and apply (2.16) to x =  

and KO is some fdependent real number. 

d T ( l ) / d x = j  Consider now a frequency such that 
i w / w o .  We have asymptotically: 

2, ( w ) = (i  Cow ) - Fa( i p .0" w / ma). (2.20) 

By replacing n by its expression (2.9) in terms of L, one gets the following scaling 
behaviour for w << wo and n >> 1: 

Z,, ( w  ) = Ro L''"GJ( w / w o )  15'' "3 (2.21) 

with Go(x) = (l/ix)Fo[ix]. 
Before giving the physical consequences of equation (2.21), let us mention that a 

very analogous scaling form for Z , , ( w )  at w >> wo and n >> 1 can be derived through the 
same scheme. The result reads: 

& ( U )  = RoL-'Gd(w/wo)L-'] (2.22) 
where G,[x] = (l/ix)FJix], and FJx] is the linearising variable defined by: 

F,[x]= m - w  lim T"'[xpCL,"'] (2.23) 

( pm = dT[m]/dx = 4 for all f). The function F, is regular around x = m: 

FAX] X-02 = x + [ 2( 1 -f)]-' + . . . (2.24) 

but singular around x = 0 

F,[x] = l+K,xA= 
x-0 

(2.25) 
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where K ,  is some fdependent real number, and where Am is given by: 

A,= -In f / ln 2. (2.26) 

The exponent (-1) of the size L in equation (2.22) is to be interpreted as follows. 
Since w + CO corresponds to a regime where capacitors are very good conductors, the 
resistance of the DFL at w = cc is expected to vanish as 

Z,[Oo]- L-s'y (2.27) 

where s is the well known exponent of the supraconductivity problem, which also 
characterises the static dielectric constant. Since the function G, goes to unity as 
w +CO, we deduce from (2.22) that: 

s / v = l  for all J: (2.28) 

The DFL has therefore the particularity that t / v  depends continuously upon f (see 
(2.11)) while s / v  is independent of J: The self-dual value f = f  naturally gives t / v =  
s/ v = 1. Since the value of t /  v = s/ v is very close to unity in real 2~ systems (cf 
introduction), the value (2.12) off  happens to be very close to f = f .  

The DFL has another striking feature: for percolation on regular lattices, the scaling 
laws of Z( p ,  0) for p + pc  and w + 0 and CO are expected to read respectively: 

(2.29) 

while the exponents s and t never mix on the DFL: only t / v  appears as w+O (2.21) 
and only s/ v as w +CO (2.22). 

Another way to put it is to compute the static dielectric constant: 

1 1 
E = lim - Im- 

w + o w  Z ( w )  
(2.30) 

From equations (2.17) and (2.21), we deduce easily that this quantity is finite as L + a  
on the DFL: 

CO 
f 

E = -  (2.31) 

while it is expected to diverge as p + pc  in real systems as 

- I P -Per (2.32) 

This peculiarity of our model seems to be physically due to the fact that the DFL 

mimics rather a bare backbone than a full percolating lattice with its whole distribution 
of finite clusters. It is indeed clear that the DFL possesses no finite cluster of resistors 
and the critical enhancement (2.32) of the static dielectric constant, which occurs in 
both phases p > p c  and p < p c ,  is due to the divergent size of finite conducting clusters. 
In any case, the exact result (2.31) is a limitation of the validity of our model. 

2.1.3. The loss angle. The loss angle 6 ( 0 )  is defined by the following equation: 

tan 6 = -Re[ z ] /  Im[ z ]  (2.33) 
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It has the advantages of being both a dimensionless quantity, and of being directly 

From the results of 0 2.12 (equations (2.15) to (2 .26) )  we conclude that this angle 

(a) w << w 0 ~ - " "  tan s = j I - ' l ' w o / w  ( 2 . 3 4 ~ )  

(b) woL-""<< w << wo tan S = Ao(wo/w)AO (2.34b) 

(c) WO<&.)<< woL tan S = A,( w /  ( 2 . 3 4 ~ )  

(d) w >>woL tan 6 = 2 ( 1  - f > ( w / w 0 ) L - ' .  (2 .34d)  

accessible in experimental situations (Laugier 1982). 

has four different regimes as w ranges from 0 to CO, namely: 

The numbers Ao,  A ,  are given by: 

A. = -KO sin(; ~ T A ~ ) L - ~ o " "  

A ,  = K ,  sin(+ . r rA, )L- 'm.  
(2.35) 

In order to see how far these asymptotic behaviours are reached for a finite 
generation n, we present in figure 3 a log-log plot of tan 6 against w / w o  for n = 1-26. 
Since we have chosen the self-dual value f =  3 ,  the graph is symmetric with respect to 
the y axis. In particular the slopes A. and Am are equal 

(2.36) A. = A, = In $/ln 2 = 0.585 f o r f = f .  

The four expected slopes are clearly visible. 

W / W O  

Figure 3. A log-log plot of tan S against w / w o  for the self-dual DFL at generation n = 1 
to 26. 

2.2. Three-dimensional case 

The iterative construction we have described in the introduction can be easily gen- 
eralised to build a DFL in arbitrary dimension D >  2 .  To do so, one considers cells 
containing 2 0  bonds, since 2 0  is the scaling factor of a volume when the linear scale 
is doubled. Since we are mostly interested in 3~ situations, we shall describe our 
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construction scheme in that case. Figure 4 shows the generations n = 0, 1 and 2 of the 
3~ DFL in the case f =; Gust in order to have integer numbers of resistors and 
capacitors). As in the 2~ case, we allow for a continuously varying conducting fraction 
f in the following way: the upper half of each cell contains four bonds, among which 
8(1 -f) are capacitors, and hence 8f-4 are resistors; the lower half is still purely 
resistive. We shall restrict ourselves to values o f f  lying in the interval: i< f<  1 

A 

A 

n : O  n = 1  n : 2  

Figure 4. The circuit representation of the 3D DFL at generation n = 0, 1, 2, for f =  2.  

In complete analogy with the 2~ case, and with the same notation, the impedance 
Z, (w)  of the 3~ DFL satisfies the following recursion relation: 

(2.37) 

where l ( w )  = ( iCOw)- '  still denotes the impedance of one capacitor. 
In the limiting case f= 1 of a pure resistive medium, the resistance R, of the whoie 

DFL reads therefore: R, = 2-"Ro. The factor 2-" is due to the fact that for D = 2 we 
must distinguish between resistance and resistivity. In order to take this trivial 
geometrical factor into account, let us define the frequency-dependent resistivity z, (0) 

through 

Z , ( W )  =2-"z,(w). (2.38) 
It is now very easy to iterate equation (2.37) down to n = O  and to get: 

z,(w) = (iCOw)-'T"(iw/w,). (2.39) 

The expression of z,(w) in the 3~ DFL is identical to that of 2, in the 2~ case. The 
very same transformation T holds for all dimensionalities. The only parameter which 
varies with dimension is of coursef: we shall find the optimalfin the 3~ case in a while. 

The properties of the mapping T we have used in the 2~ case are naturally still 
useful. Therefore, in the rest of this section we shall only mention the numerical values 
of those quantities which are different in dimensions 2 and 3. 

2.2.1. DC response. In analogy with the 2~ case, we obtain the following expression 
for the resistivity p = z,(O) of the DFL as a function of its length: 

p = ROLL'" (2.40) 
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where t /  v is still related to f through equations (2.7)-(2.11). The known value of this 
exponent ratio for percolation on a regular 3~ lattice ( t /  v = 2.20 f 0.10: Derrida et a1 
1983b) determines the optimal value of our parameter f: 

f= 0.561. (2.41) 

2.2.2. The loss angle. The four regimes in the frequency dependence of the loss angle 
6, described in equation (2.34), still hold in the 3~ case. The numerical values of the 
exponents Ao, A- read (for f = 0.561): 

= 0.379 Am = 0.834. 

Since these exponents obey the relation: 

(2.42) 

for all f; which is a consequence of their definition, it is not surprising that they are 
different from each other. Just as in the 2~ case, figure 5 shows a log-log plot of tan S 
against ( w / o o )  for n = 1 to 21. The four asymptotic slopes are again clearly visible. 

rc) 

c 
+ 

1 I I I 

10- 1 i o 5  10'0 1 0 - l ~  10-'0 

W l W Q  

Figure 5. A log-log plot of tan 6 against w / w o  for the 3D DFL (f=O.561) at generation 
n = 1-21. 

3. Response to an arbitrary signal 

In this section, we shall study the electrical response of the DFL to an arbitrary potential 
difference V(  t )  between its end-points A and B. This response may be characterised 
by several different quantities: intensity in a given branch of the network, total dissipated 
power, etc.. . . We have chosen for simplicity the voltage F , ( t )  across one of the 
capacitors which appears at generation n = 1. Figure 6 shows the circuit corresponding 
to the ( n  + 1)th generation of the whole 2~ DFL, for f = i. 
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G Z. 

k: Z. Fp!tl Z. 

Figure 6. Definition of the response voltage Ffl ( l )  of the DFL to a6 arbitrary input 
signal 1. 

The computation of F,,( t )  we present here is valid for all f and arbitrary dimension. 
We shall do it in detail in the 2~ case, and let the reader convince himself that our 
result (3.2) is also valid in the 3~ case. 

r , ( w )  and F , , ( w )  denote the Fourier transforms of the input signal V(t) ,  
the global intensity across the DFL, and our response signal respectively. They are 
related through: 

Let 

Using the expression (2.2) of the impedance Z n ( w ) ,  we obtain the following equation: 

F, , (w)  = F ( w j $ ( l  - f ) ~ ~ ( i w / w , ) + f l - '  (3.2) 

which solves our problem: the response F , , ( w )  is expressed as a function of the input 
? ( U ) .  In order to illustrate the general features of this response, which are contained 
in the right-hand side of equation (3.2), let us take the example of a step-function input 

v(t) = v,,e(t) 
F ( w )  = voi(w -io). 

The signal F,,(t) is then given by the following integral: 

dw eiw' VO F,(t)= -- I 2 r i  w -io 2[(1 -f)T"(iw/wo)+fl '  

(3.3) 

(3.4) 

For n = 0, the integral is easily evaluated by closing the contour in the lower half plane 
for t < O :  

Fa( t )  = 0 (3.5a) 

and in the upper half plane for t > 0: 

Fo(~) = ( Vo/2f)[1 -exp(-fwot/l -f)l. (3.56) 

This result could of course be obtained by elementary circuit equations. The basic 
feature of this expression is the occurrence of one relaxation time T given by: 

1 -f 
f 

0 0 7  = - 

For arbitrary n, the same way of closing integration contours and summing residues 
leads to the following expressions of F,( t )  for t < 0: 

F n ( t ) = O  (3.7~1) 
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and for t > 0: 

(3.7b) 

where the integer a labels the pre-images xu of the point f / (  f - 1) by the 2" branches 
of T-", and where dT"[x,]/dx denotes the derivative of the direct mapping T" at 
those points. Since the point f/(f- 1) satisfies: 

and since the origin belongs to the Julia set J (see Q 2.1), we deduce that f/(f- 1) and 
all the x, also belong to the Julia set of T. In particular, the xu are real negative 
numbers. In other words, the right-hand side of equation (3.7b) is a sum of 2" purely 
exponentially decreasing functions. 

The DFL at generation n possesses 2" intrinsic relaxation times simply related to 
the xu:  

7,' = -X,Wo. (3.9) 

n = O  -XI = 2 

For instance, for f= 3 in the 2~ case, the x, read: 

n = l  -x, = 0.354 249 

-x* = 5.645 751 

n = 2  -x, =0.137 803 

-x2 = 0.439 282 

-xj = 2.570 695 

(3.10) 

-xq= 12.852 220 
etc. 

When the size of the DFL becomes large, we know that the 2" points x, converge 
towards the whole Julia set J of the mapping T, and that their density converges 
towards the unique balanced invariant measure on this set denoted d p  (Brolin 1965, 
Barnsley et a1 1982). This invariant measure plays a crucial role in the theory of 
rational transformations and Julia sets. We shall not need many of its properties in 
the following, except the fact that the 2" relaxation times given by (3.9) converge 
towards the Julia set J, independently of the input signal V ( t ) ,  and their density on 
that set is also given by the remarkable mathematical objects dp,  independently of 
V(t). In particular, since J extends from 0 to 03, the infinite DFL exhibits arbitrarily 
small and large time scales. For a large but finite generation n, it is easy to realise 
that the smallest and largest relaxation times behave like: 

( W o T s ) - l  c, L (3.11a) 

(WoT1)- '  CIL-"" (3.11b) 

where C, and C, aref-dependent numbers, which happen to be related to the linearising 
variables Fo and F, of 0 2.1.2. More precisely, -Cl is the location of the singularity 
of Fo having the smallest modulus, -C, is the location of the singularity of F, having 
the largest modulus. 
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In percolation on regular lattice<, the largest time scale is expected to diverge when 

(3.12) 

The fact that t appears in equation (3.11b) instead of (s+ t )  has already been 
mentioned in § 2.1.2. The existence of relaxation times much smaller than W O '  = ROCo 
may appear more astonishing, since ROCo sets the microscopic time scale of the DFL. 

However it is easy to realise that the very particular geometry of the DFL is responsible 
for these very quick transport phenomena. For instance, the capacitors we are looking 
at receive or loose charges through 2" resistances Ro in parallel, giving rise to time 
scales as small as T~ - 2-". 

The co-existence of small and large relaxation times is illustrated in figure 7, which 
shows a plot of F, , ( t )  for n = 0-3, and f = f corresponding to an  input V( t )  = e( t ) ,  

It is c k a r  that, as n increases, the beginning of the response signal gets steeper 
and steeper while its long time tail stretches farther and farther. 

P + P c  as 
71 - I p - p c l - c s + r ) .  

0.75t  .... .... A 

0 0.5 1.0 
wc t 

Figure 7. The response signal F,(r) as a function of time, for f= $ and n = 0 to 3. The 
input is a unit step function ( V, = 1). 

Figure 8 shows a part of the Julia set J for f =$. The integrated density H ( x )  of 

H ( x )  = p(1-00; 4)  (3.13) 
is plotted against x, for - 10 < x < 0. 

In other words, the continuous function H ( x )  represents the fraction of relaxation 
times which are less than x for a very large DFL. H ( x )  is non-zero for arbitrary large 
negative values of x, since we have seen that the (infinite) DFL possesses arbitrarily 
small relaxation times. H ( x )  also exhibits interesting scaling behaviour as x + 0 or 
x +  -CO, that we shall need not hereafter, and therefore d o  not, discuss for sake of 
brevity. Each interval where H is a constant is a hole of J Between any two points 
x, and x2 with H ( x , )  f H ( x 2 )  there exists one point of J, and therefore an  infinity of 
them. This plot gives a feeling of the complexity of the relaxation times of the (infinite) 

the invariant measure d p :  

DFL. 
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1.0r 

i 

0 
-10 -8 - 6  - 4  - 2  0 

Figure 8. An illustration of the Julia set I associated to the mapping T fo r f=  f, showing 
the integrated density H ( x )  of the invariant measure d p  for -10 < x < 0. 

4. The problem of noise 

Another question of interest can be exactly solved on the DFL: what is the observable 
noise spectrum of the whole lattice if each resistor has a given noise? Let us assume 
that the resistance of each conducting bond has a small time-dependent dimensionless 
random component Ao( t ) :  

R = Roll +Ao(  t ) l .  (4.1) 

These fluctuations are assumed to be identical, stationary independent of each other, 
and characterised by their common spectral density: 

S o ( w )  = dt  ei""(Ao(t)Ao(0)). (4.2) 

This models the so-called flicker noise, which happens to be in l/f (i.e. S o ( w )  - l / w )  
in most cases. 

Let us first consider the 2~ lattice. In that case, the noise spectrum of the whole 
DFL at generation n = 1 is obtained as follows: starting from equation (4.1) for each 
of the 4f resistors of the cell, one looks for the renormalised noise A I (  t )  such that the 
impedance & ( U )  of the whole lattice between A and B reads: 

Z R ( 0 )  = Z I ( ~ ) [ l + & ( 4 1  (4.3) 
where we have used the Fourier transform in order not to write time integrals and 
derivatives. The resulting spectral density SI( U )  is then obtained through its definition, 
in analogy with (4.2): 

= l f i l ( 4 1 2 .  (4.4) 



Electrical properties of percolation clusters 2579 

The result is: 

= So(w)g(iw/wo) (4.5) 

where the gain (or amplification) g is the following f-dependent function: 

2f - 1 + 12 ( 1 - f) x + 2 f - 1 14 

8l(l -f)x+f1212(l -f)x2+2f -112 g(x) = 

This computation can be easily pursued up to an arbitrary generation n, where the 
noise spectrum of the whole DFL reads: 

& ( U )  = So(w)g(iw/wo)g[ T(iw/w,)]. . . g[ T"-'(iw/wo)]. (4.7) 

Since we are interested in the frequency dependence of this noise spectrum, let us 
define the relative amplification r , ( w / w O )  by dividing each g function in (4.7) by the 
constant factor g(  1) = f/4: 

(4.8) 

This definition ensures that r, has a smooth limit T,(w/wo) when n + CO, for w # 0 
and CO. This limit, which describes the frequency dependence of the noise amplification 
of the infinite DFL, obeys the following functional equation: 

r,( U /  wo) = f ' g (io/ wo)r,[ -i T( iw / wO)]. (4.9) 

From this exact relation, we deduce in particular the behaviour of the noise 
amplification at low frequency: 

with 

and at high frequency: 

with 

In 2/f  Y,=-.  
In 2 

(4.1 Ob) 

(4.11b) 

The noise amplification exhibits therefore a power-law behaviour for w << wo and 
w >>wo. At w =0, r , ( w / w 0 )  diverges with the size of the DFL as: 

(4.12) 

The problem of noise on the 3~ DFL is soluble by the very same method. The only 
difference is that the function g defined in equation (4.6) contains an overall factor 3: 

g , d x l =  Sg2dxl. (4.13) 
This factor is cancelled out in the definition of the relative amplification T , ( w ) ,  which 
has therefore the same properties in dimensions 2 and 3. In particular, the power laws 
(4.10)-(4.11) hold in arbitrary dimension. 

r,[o] = [4f1g(o)]" = L ~ O ' / " .  
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If we take for f their optimal values in the 2~ and 3D models, the noise exponents 
read: 

Yo=2.392 Y,= 1.585 
(4.14) 

The fact that noise amplification exhibits scaling behaviours with its own critical 
exponents (Yo ,  Y are not (simply) related to s and t )  has also been recently pointed 
out by Rammal (1984), Luck (1984) and Rammal et a1 (1985). The fact that Y is 
related to the fractal dimension d, of our DFL (see equation (5.3) in next section)' 
through Y = Y, = 1 - D + d, is merely a coincidence due to the simpli'city of our model, 
just as the result s = v (see equation (2.28)), and by no means a genuine equality 
between critical exponents. 

The fact that r, diverges at w +CO with the positive exponent Y,  is not surprising 
if we remember that we deal with the amplification of the dimensionless quantity A (  t )  
normalised with respect to the total impedance of the DFL which falls off as l /w. 

2D [f =31 
3D [ f = 0.5611 Yo = 2.062 Y, = 1.834. 

5. Remarks and conclusion 

We have shown that the original Kirkpatrick deterministic model of a 2~ percolation 
backbone is easily generalisable to time-dependent electrical properties, and to 
dimensionalities D > 2. The presence of the free parameter f in the model is crucial: 
otherwise all properties would be independent of dimension. In the 2~ case, our DFL 
is self-dual for the particular value f = 3, where we have s/  v = t /  v = 1, while the value 
0.977 is expected on real systems. In the 3~ case, where we have no simple geometrical 
criterion to choose an optimal value of f ,  the fit of t /  v with its (numerically) known 
value seems reasonable. 

A considerable advantage of the DFL is that a complete analytical treatment of a 
large number of properties is available. The basic difference between our model and 
percolation clusters has been pointed out in § 2.1.2: its static dielectric constant does 
not diverge with the size of the DFL. This lack of a singularity has several implications: 
the length-frequency crossover exponent is t /  v instead of ( s  + t ) /  v ;  the loss angle S 
has a minimum about w = wo which goes to zero asf" when n + a, while this minimum 
is expected to reach the following universal value in realistic systems: 

This relation is a consequence of the scaling laws (2.29), where po and pm are real 
analytic functions. The physical origin of this difference is probably the absence of 
finite clusters around the infinite one: in a loose sense the DFL is a bare backbone. 

Our model can be generalised to more complicated bonds than pure resistors and 
capacitors. Experimentally interesting situations correspond for instance to a 
frequency-dependent resistance of the conducting bonds, taking into account the skin 
conductance at high frequency, or the detailed texture of the microbeads in experiments 
on powders (Laugier 1982). Let us describe in more detail a special choice of bond 
impedances which gives rise to a chaotic behaviour. Assume that the resistors are 
replaced by pure inductances Lo (impedance iLow) while the capacitors remain perfect 
(impedance (iCou)-'). A simple modification of equation (2.2) gives the following 
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expression for the impedance of the 2~ DFL: 

z , ( w )  = (iCow)- 'T"(-w2/oi)  (5.2) 

where m i =  (LOCO)- ' ,  Since there are no losses in the system, Z, is purely imaginary. 
Its w dependence can be said to be chaotic in the following sense. There exist 2" (real 
positive) values of w 2  where Z , ( w )  vanishes (so that ( - u * / w i )  is a pre-image of 0 by 
T - " )  and 2" other values of u2 where Z , ( w )  is infinite (like (-u2/ui) is a pre-image 
of CO by T-" ) .  These two series of points are contained in the Julia set of transformation 
T. The impedance Z , ( w )  has therefore a smooth behaviour when ( - w 2 / u i )  describes 
the holes of J, but undergoes wild variations (for large n )  when (-u2/ui) crosses J. 

Let us finally emphasise that the DFL certainly does not reproduce correctly all 
properties of percolation clusters which are related to the structure of the backbone, 
since the exponents s and t are far from being sufficient to characterise a fractal set. 
More subtle problems, like elasticity or viscosity, certainly require a more delicate 
treatment. We just mention a simple quantity, namely the Hausdorfi (or fractal) 
dimension, with which the values on the DFL and on a percolating backbone are not 
in a good agreement. Since the conducting part of the DFL is made of 4f (respectively 
8f) parts which are similar to it in the 2~ (respectively 3 ~ )  model, with a similarity 
ratio i ,  the fractal dimension of the DFL reads: 

2D d f = ( l n 4 f ) / ( l n 2 ) =  1.415 

3D df= (In 8f)/(ln 2) = 2.166. 
(5.3) 

These numbers are to be compared with the recent accurate numerical work of Puech 
and Rammal (1983) which predicts: 

2D d f =  1.68 * 0.02 (5.4a) 

and that of Herrmann and Stanley (1984) which predicts: 

2D d f =  1.62 * 0.02 

3D df = 1.74 f 0.04. 
(5.4b) 

This illustrates once more that percolating clusters cannot be reduced to a small 
collection of exponents. 

It would be very interesting to compare the predictions of the present study of the 
DFL with experimental data and theoretical work on more realistic systems. Let us 
mention that one of us (Luck 1985) has used the Migdal-Kadanoff approximation (or 
equivalently hierarchical lattices) to examine the same kind of problems in Z D  and 3~ 

percolation clusters, in particular the loss angle, and the low-frequency noise amplifi- 
cation. 
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